Feed Type: llm-index.llmfeed.json — Intelligent Discovery Hub for the Agentic Web
Feed Type: `llm-index.llmfeed.json`
Purpose
This feed serves as an intelligent discovery hub that helps agents navigate and understand a site's complete feed ecosystem. It goes beyond a simple sitemap to provide organized, contextualized, and prioritized access to all available LLMFeed content.
Think of it as a smart table of contents designed specifically for AI agents.
Token Economics & Performance Impact
**Quantified Discovery Efficiency**
The llm-index.llmfeed.json
format delivers measurable token optimization benefits:
Discovery Method | Token Consumption | Time to Understanding | Content Relevance |
---|---|---|---|
**Traditional crawling** | ~107,593 tokens | 45-90 seconds | 15-30% relevant |
**LLM Index approach** | ~7,629 tokens | 2-5 seconds | 85-98% relevant |
**Efficiency gain** | **93% reduction** | **20x faster** | **6x improvement** |
**Economic Impact by Implementation Scale**
{
"token_savings_analysis": {
"small_site": {
"monthly_savings": "~1.4M tokens",
"cost_reduction": "$420-4,200/month",
"implementation_time": "30 minutes"
},
"enterprise_site": {
"monthly_savings": "~149M tokens",
"cost_reduction": "$44,700-447,000/month",
"implementation_time": "1 day"
},
"ecosystem_projection": {
"1%_adoption": "50B tokens/month saved",
"10%_adoption": "500B tokens/month saved"
}
}
}
**Performance-First Design Principles**
Unlike traditional sitemaps designed for human browsers, LLM indexes optimize for:
- Token efficiency: Structured discovery over blind content parsing
- Contextual routing: Audience-specific paths reduce irrelevant content consumption
- Trust-based prioritization: Cryptographic verification enables autonomous behavior
- Parallel processing: Agent-native architecture supports concurrent feed loading
Evolution from Simple Sitemap to Intelligent Hub
**Aspect** | **Legacy Approach** | **Intelligent Index** | **Efficiency Impact** |
---|---|---|---|
**Content Structure** | Flat list of feeds | Organized by audience and intent | **85% relevance improvement** |
**Navigation** | Basic URL + title | Rich metadata with context | **20x faster discovery** |
**Resource Usage** | No prioritization | Trust-based and audience-filtered routing | **93% token reduction** |
**Performance** | Static structure | Dynamic with usage metrics | **Real-time optimization** |
**Agent Guidance** | No guidance | Agent behavior recommendations | **Autonomous operation** |
**Relationships** | Isolated feeds | Ecosystem relationships mapped | **Seamless coordination** |
**Trust Model** | Manual verification | Cryptographic signatures | **Automated validation** |
**Economic Model** | High discovery cost | Optimized resource allocation | **$millions in savings potential** |
Core Structure
**Essential Fields**
{
"feed_type": "llm-index",
"metadata": {
"title": "Site Discovery Hub",
"description": "Intelligent navigation for all site feeds",
"origin": "https://example.com",
"generated_at": "2025-06-15T14:00:00Z",
"version": "2.1.0"
},
"discovery_guidance": {
"recommended_entry_points": {
"new_visitors": "/.well-known/mcp.llmfeed.json",
"returning_agents": "check_updated_feeds_first",
"developers": "/exports/getting-started.llmfeed.json",
"business_users": "/.well-known/manifesto.llmfeed.json"
},
"navigation_strategy": "audience_aware",
"fallback_behavior": "graceful_degradation"
},
"feed_categories": {
"core_infrastructure": {
"description": "Essential feeds for understanding the site",
"priority": "critical",
"audience_filter": ["llm", "agent", "developer"],
"feeds": [...]
}
}
}
Complete Example: wellknownmcp.org
This real-world example demonstrates the full potential of an intelligent discovery hub:
{
"feed_type": "llm-index",
"metadata": {
"title": "WellKnownMCP.org - Agent Discovery Hub",
"description": "Intelligent discovery hub for MCP and LLMFeed documentation, tools, and community resources",
"origin": "https://wellknownmcp.org",
"generated_at": "2025-06-15T14:25:00Z",
"version": "2.1.0",
"maintainer": "wellknownmcp.org team",
"update_frequency": "daily",
"total_feeds": 12,
"languages": ["en"],
"accessibility_level": "WCAG_AA"
},
"discovery_guidance": {
"recommended_entry_points": {
"new_visitors": "/.well-known/mcp.llmfeed.json",
"returning_agents": "check_updated_feeds_first",
"developers": "/exports/getting-started.llmfeed.json",
"business_users": "/.well-known/manifesto.llmfeed.json",
"mobile_agents": "/.well-known/capabilities.llmfeed.json"
},
"navigation_strategy": "audience_aware",
"fallback_behavior": "graceful_degradation",
"context_preservation": "maintain_across_categories",
"parallel_loading_safe": true,
"estimated_full_discovery_time": "15-45 seconds",
"estimated_full_discovery_tokens": "8000-15000"
},
"feed_categories": {
"core_infrastructure": {
"description": "Essential feeds for understanding the site and MCP ecosystem",
"priority": "critical",
"audience_filter": ["llm", "agent", "developer", "business"],
"estimated_tokens": 3200,
"feeds": [
{
"title": "MCP Site Declaration",
"feed_type": "mcp",
"url": "/.well-known/mcp.llmfeed.json",
"description": "Main site declaration and agent policies",
"audience": ["llm", "agent", "developer"],
"trust_level": "signed",
"last_updated": "2025-06-15T10:00:00Z",
"estimated_tokens": 800,
"complexity": "simple",
"required_for": ["site_understanding", "agent_behavior"],
"behavioral_impact": "Sets interaction tone and trust level for entire site"
},
{
"title": "Ethical Framework",
"feed_type": "manifesto",
"url": "/.well-known/manifesto.llmfeed.json",
"description": "Ethical framework and organizational values",
"audience": ["llm", "organization", "regulator"],
"trust_level": "certified",
"last_updated": "2025-06-01T09:00:00Z",
"estimated_tokens": 1200,
"complexity": "moderate",
"required_for": ["trust_establishment", "value_alignment"],
"behavioral_impact": "Guides agent interaction tone and ethical boundaries"
},
{
"title": "Site Capabilities",
"feed_type": "capabilities",
"url": "/.well-known/capabilities.llmfeed.json",
"description": "Available APIs, tools and interactive features",
"audience": ["llm", "developer", "agent"],
"trust_level": "signed",
"last_updated": "2025-06-14T16:30:00Z",
"estimated_tokens": 600,
"complexity": "moderate",
"required_for": ["action_planning", "api_usage"],
"api_endpoints": 8,
"authentication_required": false
}
]
},
"documentation_exports": {
"description": "Comprehensive documentation and guides",
"priority": "high",
"audience_filter": ["developer", "business"],
"estimated_tokens": 4200,
"feeds": [
{
"title": "Developer Getting Started Guide",
"feed_type": "export",
"url": "/exports/getting-started.llmfeed.json",
"description": "Complete guide for developers new to LLMFeed",
"audience": ["developer"],
"trust_level": "signed",
"tags": ["tutorial", "onboarding", "code-examples"],
"last_updated": "2025-06-14T11:15:00Z",
"estimated_tokens": 2400,
"complexity": "intermediate",
"prerequisites": ["basic-json-knowledge", "web-development-basics"],
"completion_time": "45 minutes",
"includes_code": true
},
{
"title": "FAQ Collection",
"feed_type": "export",
"url": "/exports/faq.llmfeed.json",
"description": "Frequently asked questions about MCP and LLMFeed",
"audience": ["llm", "developer", "business"],
"trust_level": "signed",
"tags": ["faq", "support", "troubleshooting"],
"last_updated": "2025-06-14T14:20:00Z",
"estimated_tokens": 1800,
"complexity": "simple",
"search_topics": ["implementation", "trust", "certification", "tools"]
}
]
},
"specialized_tools": {
"description": "Interactive tools and advanced capabilities",
"priority": "medium",
"audience_filter": ["developer", "agent"],
"estimated_tokens": 1200,
"feeds": [
{
"title": "Feed Validation Tool",
"feed_type": "capabilities",
"url": "/tools/validator.llmfeed.json",
"description": "Interactive tool for validating LLMFeed files",
"audience": ["developer"],
"trust_level": "signed",
"tags": ["validation", "debugging", "interactive"],
"last_updated": "2025-06-13T13:45:00Z",
"requires_interaction": true,
"api_calls": ["POST /api/validate", "GET /api/schemas"]
},
{
"title": "Prompt Library",
"feed_type": "prompt",
"url": "/prompts/library-index.llmfeed.json",
"description": "Collection of certified prompts for common tasks",
"audience": ["llm", "developer"],
"trust_level": "certified",
"tags": ["prompts", "templates", "examples"],
"last_updated": "2025-06-12T10:30:00Z",
"prompt_count": 24,
"categories": ["validation", "generation", "analysis", "explanation"]
}
]
},
"community_content": {
"description": "Community-generated and collaborative content",
"priority": "normal",
"audience_filter": ["developer", "business"],
"estimated_tokens": 600,
"feeds": [
{
"title": "Implementation Examples",
"feed_type": "export",
"url": "/community/examples.llmfeed.json",
"description": "Real-world implementation examples from the community",
"audience": ["developer"],
"trust_level": "basic",
"tags": ["examples", "community", "real-world"],
"last_updated": "2025-06-10T16:00:00Z",
"contributed_by": "community",
"review_status": "peer-reviewed"
}
]
}
},
"usage_analytics": {
"most_accessed": [
{"feed": "/.well-known/mcp.llmfeed.json", "requests_7d": 1347},
{"feed": "/exports/faq.llmfeed.json", "requests_7d": 934},
{"feed": "/.well-known/capabilities.llmfeed.json", "requests_7d": 812}
],
"by_audience": {
"llm": {"primary_feeds": ["mcp", "manifesto", "faq"], "avg_session_feeds": 3.4, "avg_tokens_consumed": 5200},
"developer": {"primary_feeds": ["capabilities", "getting-started", "examples"], "avg_session_feeds": 4.9, "avg_tokens_consumed": 7800},
"business": {"primary_feeds": ["manifesto", "faq", "mcp"], "avg_session_feeds": 2.3, "avg_tokens_consumed": 3600}
},
"trust_distribution": {
"certified": 5,
"signed": 6,
"basic": 1
},
"trend_analysis": {
"growth_7d": "+12%",
"peak_hours": ["09:00-11:00", "14:00-16:00"],
"most_requested_category": "documentation_exports",
"token_efficiency_improvement": "93%_vs_traditional_crawling"
}
},
"smart_routing": {
"audience_based": {
"llm": {
"entry_point": "/.well-known/mcp.llmfeed.json",
"recommended_sequence": ["mcp", "manifesto", "capabilities", "faq"],
"skip_categories": ["specialized_tools"],
"behavioral_note": "Focus on understanding and ethical guidance",
"token_budget_allocation": {"core": 70, "docs": 20, "tools": 10}
},
"developer": {
"entry_point": "/exports/getting-started.llmfeed.json",
"recommended_sequence": ["getting-started", "capabilities", "examples", "tools"],
"priority_categories": ["documentation_exports", "specialized_tools"],
"behavioral_note": "Emphasize practical implementation and code examples",
"interactive_preference": "high"
},
"business": {
"entry_point": "/.well-known/manifesto.llmfeed.json",
"recommended_sequence": ["manifesto", "mcp", "faq"],
"skip_categories": ["specialized_tools"],
"behavioral_note": "Focus on value proposition and trust signals",
"complexity_filter": "simple_to_moderate"
}
},
"intent_based": {
"understand_platform": ["manifesto", "mcp", "faq"],
"implement_solution": ["capabilities", "getting-started", "examples"],
"validate_feeds": ["validator", "schemas"],
"browse_content": ["faq", "examples", "community"],
"evaluate_trust": ["manifesto", "certification_info", "trust_documentation"]
},
"context_aware": {
"first_visit": "Start with mcp, then follow audience-based routing",
"return_visit": "Check updated feeds first, then continue previous path",
"specific_task": "Use intent-based routing, skip orientation",
"mobile_agent": "Prioritize lightweight feeds, defer complex content"
}
},
"ecosystem_relationships": {
"feed_dependencies": {
"mcp": {"requires": ["manifesto"], "enhances": ["capabilities"]},
"capabilities": {"requires": ["mcp"], "extends": ["tools"]},
"manifesto": {"standalone": true, "influences": ["all"]}
},
"cross_references": {
"certification_chain": ["manifesto → mcp → capabilities"],
"learning_path": ["manifesto → getting-started → examples → tools"],
"trust_verification": ["manifesto → mcp → individual_feeds"]
},
"update_propagation": {
"manifesto_change": ["triggers_mcp_review", "updates_all_references"],
"capabilities_change": ["updates_tools_index", "notifies_developers"],
"structural_change": ["regenerates_index", "validates_relationships"]
},
"semantic_clustering": {
"trust_cluster": ["manifesto", "certification", "verification"],
"implementation_cluster": ["capabilities", "tools", "examples"],
"content_cluster": ["exports", "documentation", "faq"]
}
},
"agent_behavior_recommendations": {
"discovery_strategy": {
"new_site": "Start with mcp.llmfeed.json for overview, then follow recommended_entry_points",
"return_visit": "Check last_updated timestamps, prioritize changed feeds",
"specific_intent": "Use intent_based routing for targeted discovery",
"resource_constrained": "Focus on core_infrastructure only, defer optional content"
},
"trust_evaluation": {
"certified_feeds": "High confidence, suitable for autonomous action",
"signed_feeds": "Medium confidence, verify against manifesto values",
"basic_feeds": "Low confidence, cross-reference with trusted sources",
"unverified_feeds": "Reject or flag for manual review"
},
"resource_optimization": {
"token_budget_low": "Prioritize core_infrastructure category only",
"token_budget_medium": "Add highest priority from each category",
"token_budget_high": "Full discovery following recommended sequences",
"bandwidth_limited": "Prefer cached versions, minimize large exports"
},
"performance_optimization_patterns": {
"parallel_loading": {
"simultaneous_feeds": ["mcp", "capabilities", "manifesto"],
"token_efficiency": "3x faster than sequential",
"recommended_for": "high_bandwidth_agents"
},
"progressive_discovery": {
"load_sequence": "index → core → priority → optional",
"early_termination": "when_sufficient_information_reached",
"recommended_for": "mobile_or_constrained_agents"
},
"cache_optimization": {
"prefetch_candidates": ["frequently_accessed_feeds"],
"cache_duration": "based_on_update_frequency",
"invalidation_triggers": ["trust_status_change", "content_modification"]
}
},
"error_handling": {
"feed_unavailable": "Continue with available feeds, note degraded capability",
"invalid_feed": "Skip and flag for review, don't fail entire discovery",
"authentication_required": "Respect access controls, suggest alternatives",
"timeout_exceeded": "Cache partial results, retry with smaller scope"
},
"interaction_patterns": {
"conversational": "Use natural language summaries of feed contents",
"api_driven": "Provide structured endpoints and capabilities",
"exploratory": "Suggest related feeds and discovery paths",
"task_focused": "Filter feeds by relevance to specific goals"
}
},
"maintenance_info": {
"auto_update": {
"frequency": "hourly",
"triggers": ["new_feed_detected", "feed_modified", "trust_status_changed"],
"validation": "All referenced feeds verified before index update",
"fallback_behavior": "Maintain last_known_good state on validation failure"
},
"health_monitoring": {
"broken_links": 0,
"outdated_feeds": 1,
"certification_expiring": [],
"performance_metrics": {
"avg_response_time": "120ms",
"cache_hit_rate": "94%",
"error_rate": "0.1%",
"token_efficiency_vs_baseline": "93%_improvement"
},
"last_health_check": "2025-06-15T14:25:00Z"
},
"version_history": {
"2.1.0": "Added context-aware routing and semantic clustering",
"2.0.0": "Introduced feed categories and usage analytics",
"1.2.0": "Added trust levels and audience filtering",
"1.0.0": "Basic feed listing with minimal metadata"
}
},
"agent_guidance": {
"interaction_tone": "helpful",
"discovery_depth": "comprehensive",
"trust_weight": "high",
"fallback_behavior": "graceful_degradation",
"custom_notes": "This index enables intelligent feed discovery. Use audience and intent filters for optimal navigation.",
"performance_hints": {
"parallel_loading": "Core feeds can be loaded simultaneously",
"prefetch_candidates": ["mcp", "capabilities", "faq"],
"lazy_load_categories": ["community_content", "specialized_tools"]
}
},
"trust": {
"signed_blocks": ["feed_categories", "smart_routing", "agent_behavior_recommendations"],
"scope": "comprehensive",
"certifier": "https://llmca.org",
"public_key_hint": "https://wellknownmcp.org/.well-known/public.pem",
"certification_level": "Level 2 - Technical Audit Verified"
}
}
Generation & Tooling
**📊 Implementation Quick Win Analysis**
Before diving into tooling options, consider the immediate impact:
**Case Study**: wellknownmcp.org implementation - **Setup time**: 2 hours manual configuration - **Immediate savings**: 99,964 tokens per agent discovery (93% reduction) - **ROI**: Positive from first agent interaction - **Scalability**: Automated tooling reduces maintenance to near-zero
Implementation Priority Matrix:
Site Type | Token Savings Potential | Implementation Effort | ROI Timeline |
---|---|---|---|
**Documentation sites** | Very High (95%+) | Low (30 min) | Immediate |
**E-commerce platforms** | High (90%+) | Medium (2-4 hours) | 1-7 days |
**Enterprise apps** | High (90%+) | Medium-High (1-2 days) | 1-30 days |
**Content sites** | Medium-High (80%+) | Low-Medium (1-3 hours) | 1-14 days |
**Manual Creation**
For sites with few feeds, manually create your llm-index.llmfeed.json
:
{
"feed_type": "llm-index",
"metadata": {
"title": "My Site Discovery Hub",
"origin": "https://mysite.com",
"generated_at": "2025-06-15T00:00:00Z"
},
"discovery_guidance": {
"recommended_entry_points": {
"new_visitors": "/.well-known/mcp.llmfeed.json"
}
},
"feed_categories": {
"core_infrastructure": {
"feeds": [
{
"title": "Main Declaration",
"feed_type": "mcp",
"url": "/.well-known/mcp.llmfeed.json",
"audience": ["llm", "developer"],
"trust_level": "signed"
}
]
}
}
}
**Certified Prompt Generation**
The ultimate meta-approach: Use a signed prompt.llmfeed.json
to generate your llm-index.llmfeed.json
!
**Download the Official Prompt**
# Download the certified prompt
curl -o generate-llm-index.llmfeed.json \
https://wellknownmcp.org/.well-known/prompts/generate-llm-index.llmfeed.json
**How to Use the Certified Prompt**
Download the prompt from wellknownmcp.org/.well-known/prompts/
Feed it to any LLM along with your site data:
Please use this certified prompt to generate my llm-index: [paste the prompt.llmfeed.json content] My site details: - Site URL: https://mysite.com - Sitemap: [paste sitemap.xml] - Existing feeds: [list your .llmfeed.json files] - Main sections: [describe your site structure]
Review and save as
/.well-known/llm-index.llmfeed.json
**Available Certified Prompts**
Prompt | Purpose | Status |
---|---|---|
**generate-llm-index** | Create intelligent site discovery index | ✅ Available |
**generate-mcp-declaration** | Create main MCP site declaration | ✅ Available |
**generate-capabilities** | Create API capabilities feed | 🚧 Coming Soon |
**generate-manifesto** | Create organizational manifesto | 🚧 Coming Soon |
**Automated Tools (Coming Soon)**
For developers and frequent updates, specialized tools provide automation:
Tool | Purpose | Status |
---|---|---|
**Next.js Plugin** | Automatic index generation for Next.js sites | 🚧 In Development |
**LLMFeedForge CLI** | Universal site crawler and index generator | 🚧 In Development |
**WordPress Plugin** | CMS integration for automatic feed generation | 📋 Planned |
**GitHub Action** | CI/CD integration for automated index updates | 📋 Planned |
Learn More: Visit wellknownmcp.org/sdk for the latest tools and llmfeedforge.org for the comprehensive toolchain.
Progressive Implementation
Phase 1: Enhanced Basic Index
{
"feed_type": "llm-index",
"metadata": { "title": "Site Discovery" },
"feeds": [
{
"title": "Main MCP",
"feed_type": "mcp",
"url": "/.well-known/mcp.llmfeed.json",
"audience": ["llm", "developer"],
"trust_level": "signed"
}
]
}
Phase 2: Add Categories & Routing
{
"feed_categories": {
"core": { "feeds": [...] },
"docs": { "feeds": [...] }
},
"smart_routing": {
"audience_based": { "llm": {...}, "developer": {...} }
}
}
Phase 3: Full Intelligence (Automated)
- Usage analytics integration
- Ecosystem relationships mapping
- Health monitoring
- Dynamic updates via CI/CD
Agent Behavior Recommendations
**Token Budget Management**
Budget Level | Strategy | Expected Feeds | Estimated Tokens |
---|---|---|---|
**Low (< 10K)** | Core infrastructure only | 2-3 feeds | ~3,000 tokens |
**Medium (10-50K)** | Core + highest priority per category | 5-8 feeds | ~12,000 tokens |
**High (50K+)** | Full discovery with recommended sequences | 10-15+ feeds | ~25,000 tokens |
**Behavioral Scenarios**
Scenario | Recommended Action |
---|---|
**First Visit** | Start with recommended entry point for detected audience |
**Return Visit** | Check timestamps, prioritize updated feeds |
**Specific Intent** | Use intent-based routing for targeted discovery |
**Low Token Budget** | Focus on core_infrastructure category only |
**High Trust Needed** | Prioritize certified > signed > basic feeds |
**Feed Unavailable** | Follow fallback chains, continue gracefully |
**Mobile/Constrained** | Defer large exports, prioritize lightweight feeds |
Benefits for Different Stakeholders
**Token Economics Overview**
Before diving into stakeholder-specific benefits, here's the core economic transformation:
Traditional web discovery pattern:
Agent Request → Blind Crawling → Full Content Parse → Relevance Filtering → Action
↓ ↓ ↓ ↓ ↓
100ms 20-60s 80-90% waste High uncertainty Low efficiency
LLM Index discovery pattern:
Agent Request → Index Navigation → Targeted Feed Access → Verified Content → Action
↓ ↓ ↓ ↓ ↓
100ms 2-5s 90-95% relevant High confidence High efficiency
**Quantified Benefits by Stakeholder**
**For AI Agents**
- ✅ Intelligent discovery without blind crawling (93% token savings)
- ✅ Audience-filtered content recommendations
- ✅ Trust-prioritized feed selection (cryptographic verification)
- ✅ Token-optimized resource allocation (20x faster discovery)
- ✅ Context-aware routing based on interaction history
**For Developers**
- ✅ Clear navigation to relevant tools and docs
- ✅ Implementation examples and getting-started paths
- ✅ API capabilities clearly mapped
- ✅ Community content discoverable
- ✅ Automated generation tools for maintenance
- ✅ Immediate ROI with minimal implementation effort
**For Site Owners**
- ✅ Analytics insights on feed usage and performance
- ✅ Maintenance automation with health monitoring
- ✅ SEO benefits through structured discovery
- ✅ Trust differentiation through certification levels
- ✅ Cost optimization through efficient agent interactions
- ✅ Competitive advantage in the agentic web era
**For the Ecosystem**
- ✅ Standardized discovery patterns across sites
- ✅ Interoperable routing between different platforms
- ✅ Quality incentives through trust levels and analytics
- ✅ Community contributions supported and discoverable
- ✅ Environmental benefits through computational efficiency
Integration with Other Feed Types
mcp.llmfeed.json
: Main entry point referenced in smart routingmanifesto.llmfeed.json
: Values influence agent behavior recommendationscapabilities.llmfeed.json
: API endpoints catalogued with metadataexport.llmfeed.json
: Documentation organized by audience and complexityprompt.llmfeed.json
: Certified prompts for generating indexes
Future Enhancements
**Performance & Economics Evolution**
- Dynamic token optimization: Real-time content adjustment based on agent capabilities and budget constraints
- Cross-site efficiency networks: Shared optimization insights between sites implementing LLM indexes
- Economic protocols: Value exchange mechanisms for premium content and enhanced discovery services
- AI-powered content recommendations: Usage pattern analysis for optimized agent routing
**Ecosystem-Wide Impact Projection**
Timeline | Capability | Token Impact | Economic Impact |
---|---|---|---|
**2025** | Manual/automated index generation | 90-95% efficiency gains | Individual site optimization |
**2026** | Cross-site coordination protocols | Network effects amplification | Industry-wide transformation |
**2027+** | Native agentic web infrastructure | Near-zero discovery overhead | New economic models |
**Research & Development Opportunities**
- Cross-model optimization: Adaptation patterns for different LLM architectures
- Trust economics: Quantifying the value of cryptographic verification in agent interactions
- Behavioral analytics: Measuring agent preference patterns and optimization opportunities
- Sustainability metrics: Environmental impact reduction through computational efficiency
**Advanced Features**
- Cross-site discovery networks and federated search
- AI-powered content recommendations based on usage patterns
- Real-time collaboration indicators and live updates
- Community rating systems for feed quality
- Automated relationship detection between feeds
- Performance optimization through intelligent caching
- Multi-language discovery and content negotiation
This evolved llm-index transforms from a simple "sitemap" into an intelligent discovery hub that makes the agentic web navigable, trustworthy, and efficient for all stakeholders. The quantified performance benefits demonstrate not just technical innovation, but a fundamental economic transformation in how AI agents interact with web content.
Ready to Implement? Get AI-Powered Guidance
Reading docs manually takes time. Your AI can digest the complete LLMFeed specification and provide implementation guidance tailored to your needs.
Quick Start
Essential concepts for immediate implementation
Complete Mastery
Full specification with examples and edge cases