Feed Type: prompt.llmfeed.json — Structured Prompts for the Agentic Web
Portable, signed, and certifiable prompts for professional use
HIGHintermediatesigned15 min
📅 Created: 6/10/2025
👥 Audience: llm, developer, prompt-engineer
🔌 Feed Types:prompttrustcertification
⚡ Capabilities:prompt-certificationsignature-verificationmarketplace-integration
🤖 LLMFeed:/.well-known/mcp.llmfeed.json
Feed Type: `prompt.llmfeed.json`
Purpose
This feed encapsulates a structured prompt that can be shared, interpreted, replayed or executed by an LLM or agent.
It is a better alternative to copy-pasted text: portable, inspectable, and context-aware.
Typical Use Cases
- Prompt engineering documentation
- Invocation of external services or agent actions
- Instructing LLMs to generate other
.llmfeed.json
types - Sharing reproducible queries across agents or tools
- Professional prompt libraries and marketplaces
Canonical Structure
json
{
"feed_type": "prompt",
"metadata": {
"title": "Generate a session feed",
"origin": "https://tool.llmfeed.org",
"author": "Alex Chen",
"created_at": "2025-06-10T14:30:00Z"
},
"intent": "export current session as JSON",
"context": "User is finishing a chat and wants to save the reasoning path.",
"precision_level": "ultra-strict",
"result_expected": "session",
"process_mode": "prepare-for-another",
"prompt_body": "You are an LLM that supports LLMFeed. Please generate a session feed with context, output and decisions.",
"trust": {
"signed_blocks": ["metadata", "prompt_body", "trust"],
"scope": "public",
"certifier": "https://llmca.org"
},
"signature": {
"value": "abc123...",
"created_at": "2025-06-10T14:30:00Z"
}
}
Core Fields
Field | Required | Description |
---|---|---|
`prompt_body` | ✅ | The actual instruction to the LLM |
`intent` | ✅ | What the user or system expects |
`context` | ⚠️ | Extra info the LLM should consider |
`precision_level` | ⚠️ | `"raw"`, `"strict"`, `"ultra-strict"` |
`process_mode` | ⚠️ | `"instruct"`, `"fill-and-execute"`, `"prepare-for-another"` |
`result_expected` | ⚠️ | `"text"`, `"feed"`, `"code"`, `"session"` |
`attachments[]` | ⚠️ | Optional examples, templates, context |
`audience` | ⚠️ | If only for LLM, wrapper, user etc. |
Trust & Ownership
Basic Signing
json
"trust": {
"signed_blocks": ["metadata", "prompt_body", "trust"],
"scope": "public"
},
"signature": {
"value": "signature_hash_here",
"created_at": "2025-06-10T14:30:00Z"
}
Certification (Optional)
json
"certification": {
"issuer": "https://llmca.org",
"cert_id": "llmca-prompt-2025-001",
"certified_blocks": ["prompt_body", "performance_metrics"],
"issued_at": "2025-06-10T10:00:00Z",
"expires_at": "2026-06-10T10:00:00Z"
}
Why sign prompts?
- ✅ Prove authorship and prevent tampering
- ✅ Build reputation as a prompt engineer
- ✅ Enable marketplaces for certified prompts
- ✅ Establish trust for sensitive use cases
Agent Behavior
An agent that receives this feed should:
- Parse the
prompt_body
and execute it - Respect
precision_level
andprocess_mode
- Attach any referenced templates or context
- Return a structured response as declared in
result_expected
- Verify signatures if trust is required
Simple Examples
Educational Prompt
json
{
"feed_type": "prompt",
"metadata": {
"title": "Python Code Explainer",
"author": "CS101 Team"
},
"intent": "explain Python code for beginners",
"prompt_body": "Explain this Python code step-by-step for a beginner: [CODE]",
"audience": ["student", "llm"],
"result_expected": "text"
}
API Documentation Generator
json
{
"feed_type": "prompt",
"metadata": {
"title": "API Doc Generator",
"origin": "https://devtools.example.com"
},
"intent": "generate API documentation",
"prompt_body": "Generate clear API documentation for this endpoint: [ENDPOINT_DATA]",
"result_expected": "markdown",
"attachments": [
{
"name": "doc_template.md",
"description": "Standard documentation template"
}
]
}
📚 Advanced Features
Professional Use Cases
Medical Consultation Assistant
json
{
"feed_type": "prompt",
"metadata": {
"title": "Emergency Triage Assistant",
"author": "Dr. Sarah Chen, MD",
"institution": "Regional Medical Center"
},
"professional_validation": {
"medical_board_approved": true,
"peer_reviewed": true,
"liability_coverage": "institutional_malpractice_policy"
},
"prompt_body": "Assess patient symptoms and provide triage recommendations following emergency medicine protocols...",
"usage_restrictions": {
"requires_medical_license": true,
"human_oversight_required": true,
"emergency_use_only": false
}
}
Legal Document Analysis
json
{
"feed_type": "prompt",
"metadata": {
"title": "Contract Risk Analyzer",
"author": "LegalTech Solutions Inc."
},
"commercial_licensing": {
"license_type": "professional",
"pricing": "$0.10_per_analysis",
"client_restrictions": "law_firms_only"
},
"prompt_body": "Analyze this contract for potential risks and compliance issues..."
}
Intellectual Property & Licensing
Copyright Protection
json
"intellectual_property": {
"copyright": "© 2025 Prompt Engineer Name",
"license": "Creative Commons Attribution 4.0",
"attribution_required": true,
"commercial_use": "permitted_with_license"
}
Commercial Licensing
json
"commercial_licensing": {
"available": true,
"pricing_model": "per_use",
"base_rate": "$0.01_per_invocation",
"volume_discounts": [
{"min_uses": 1000, "discount": "10%"},
{"min_uses": 10000, "discount": "25%"}
],
"contact": "licensing@promptcompany.com"
}
Performance & Analytics
Performance Metrics
json
"performance_metrics": {
"accuracy_benchmark": "94.7%",
"average_response_time": "2.3s",
"user_satisfaction": "4.6/5.0",
"total_uses": 15847,
"success_rate": "91.2%"
}
LLM Compatibility
json
"llm_compatibility": {
"gpt_4": {"score": 0.95, "optimal_temp": 0.3},
"claude_3": {"score": 0.92, "optimal_temp": 0.2},
"gemini": {"score": 0.89, "requires_adaptation": true}
}
Behavioral Controls
Agent Guidance
json
"agent_guidance": {
"interaction_tone": "professional",
"consent_hint": "Ask user before accessing sensitive data",
"risk_tolerance": "low",
"fallback_behavior": "escalate_to_human"
}
Trigger Targets
json
"trigger_targets": [
{
"type": "llmfeed",
"feed_type": "export",
"url": "https://example.org/exports/results.llmfeed.json"
},
{
"type": "action",
"label": "Generate Report",
"href": "/tools/report-generator"
}
]
Best Practices
For Basic Users
- Start simple - just
prompt_body
andintent
- Add
trust
block for any shared prompts - Use clear
metadata
for discovery - Test with target LLMs before publishing
For Professional Use
- Always sign commercially-used prompts
- Seek certification for high-risk domains
- Include performance metrics for transparency
- Follow licensing requirements in your jurisdiction
- Test cross-platform compatibility
For Marketplaces
- Implement proper attribution systems
- Verify signatures before listing
- Respect usage restrictions and licensing terms
- Provide performance analytics to buyers
MIME Type
Content-Type: application/llmfeed+json
Or specifically:
Content-Type: application/prompt+llmfeed
Related Feed Types
session.llmfeed.json
: Captures prompt usage in workflowscredential.llmfeed.json
: Authentication for premium promptscapabilities.llmfeed.json
: Services that use certified promptsmcp.llmfeed.json
: Overall service context including prompt libraries
References
⚡
Ready to Implement? Get AI-Powered Guidance
Reading docs manually takes time. Your AI can digest the complete LLMFeed specification and provide implementation guidance tailored to your needs.
🎯
Quick Start
Essential concepts for immediate implementation
~22K tokens • 30s analysis • Core concepts
📚
Complete Mastery
Full specification with examples and edge cases
~140K tokens • 2min analysis • Everything
💡 Works with Claude, ChatGPT, Gemini⚡ Instant implementation guidance🎯 Tailored to your specific needs